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Abstract— In this paper, we investigate the problem of group1

activity recognition by learning semantics-preserving attention2

and contextual interaction among different people. Conventional3

methods usually aggregate the features extracted from individual4

persons by pooling operations, which lack physical meaning5

and cannot fully explore the contextual information for group6

activity recognition. To address this, we develop a Semantics-7

Preserving Teacher-Student (SPTS) networks architecture. Our8

SPTS networks first learn a Teacher Network in the semantic9

domain that classifies the word of group activity based on the10

words of individual actions. Then, we design a Student Network11

in the appearance domain that recognizes the group activity12

according to the input video. We enforce the Student Network13

to mimic the Teacher Network in the learning procedure. In this14

way, we allocate semantics-preserving attention to different15

people, which is more effective to seek the key people and16

discard the misleading people, while no extra labeled data are17

required. Moreover, a group of people inherently lie in a graph-18

based structure, where the people and their relationship can19

be regarded as the nodes and edges of a graph, respectively.20

Based on this, we build two graph convolutional modules on21

both the Teacher Network and the Student Network to reason the22

dependency among different people. Furthermore, we extend our23

approach on action segmentation task based on its intermediate24

features. The experimental results on four datasets for group25

activity analysis clearly show the superior performance of our26

method in comparison with the state-of-the-art.27

Index Terms— Semantics-preserving, attention, group activity28

recognition, Teacher-Student networks.29

I. INTRODUCTION30

GROUP activity recognition (a.k.a. collective activity31

recognition), which refers to discerning what a group32
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of people are doing in a video, has attracted growing attention 33

in the realm of computer vision over the past decade [1]–[7]. 34

There are wide real-world applications for group activity 35

recognition including traffic surveillance, social role under- 36

standing and sports video analysis. Compared with conven- 37

tional action recognition which focuses on a single person, 38

group activity recognition is a more challenging task as 39

it requires further understanding of high-level relationships 40

among different people. Hence, it is desirable to design a 41

model to aggregate the individual dynamics across people and 42

exploit their contextual information for effective group activity 43

recognition. 44

Over the past few years, great efforts have been devoted to 45

mining the contextual information for group activity recog- 46

nition. In the early period, a typical series of approaches 47

are developed to design graph-based structure models based 48

on hand-crafted features [7]–[10]. However, these methods 49

require strong prior knowledge and lack discriminative power 50

to model the temporal evolution of group activity. In recent 51

years, with the spectacular progress of deep learning methods, 52

researchers have attempted to build different deep neural 53

networks [2], [3] for group activity recognition. Most of these 54

methods treat all participants with equal importance, and 55

integrate the features of individual actions by simple pooling 56

operators. However, the group activity is usually sensitive to a 57

few key persons, whose actions essentially define the activity, 58

and other people may bring ambiguous information and mis- 59

lead the recognition process. Let’s take Fig. 1 as an example. 60

The bottom of Fig. 1 shows a frame sampled from a video 61

clip in Volleyball dataset [2]. Obviously, the “spiking” person 62

shall provide more discriminative information for recognizing 63

the “right spike” activity, and those “standing” people may 64

bring some confounding information. To address these, several 65

attention-based methods [5], [11] have been proposed to assign 66

different weights to different people. Specifically, the weights 67

are learned based on the features extracted from input videos, 68

and are allocated to their corresponding features. However, 69

such a “self-attention” scheme essentially lacks physical expla- 70

nation and is not reliable enough to find the key person for 71

activity recognition. 72

In this work, we move a new step towards the interaction 73

of appearance domain and semantic domain, and propose 74

a Semantics-Preserving Teacher-Student (SPTS) model for 75
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Fig. 1. The basic idea of the SPTS networks. In the semantic domain, the task
is to map the words of individual actions, which can be treated as a caption
of the video [4], to the word of group activity. In the appearance domain,
we attempt to predict the label of group activity based on the corresponding
input video. We first learn a Teacher Network in the semantic domain, and
then employ the learned attention information, which represents the different
importance of different people for recognizing the group activity, to guide a
Student Network in the appearance domain. (Best viewed in color.)

group activity recognition. Fig. 1 shows the basic idea of76

our approach. Concretely, we first learn a high-performance77

model with typical attention mechanism (namely Teacher78

Network) to map the individual actions to group activity in79

the semantic domain. Next, we develop another model (namely80

Student Network), which predicts the group activity from the81

individual actions in the appearance domain. Then, we design82

a unified framework to utilize the attention knowledge in the83

Teacher Network to guide the Student Network. As the inputs84

of our Teacher Network are generated from the off-the-shelf85

single-action labels, our method requires no extra labelled86

data and only takes additional 2.70% computational time cost.87

Moreover, most conventional methods model the features of88

group people as regular tensor-based vectors, which ignore89

the intrinsic dependency among different people. To address90

this, we construct two types of graphs in semantic domain91

and appearance domain, respectively. The nodes of the graph92

contain the extracted features of the individual persons, while93

the adjacency matrices that encode their spatial coordinates are94

used to describe the relationship among different people. Since95

the graph of features lies in a non-Euclidean space, we further96

build two graph convolutional modules on both the Teacher97

Network and the Student Network to reason the relationship98

among different people. Besides, we propose a new approach99

for segmenting group activities in untrimmed videos, which is100

based on the intermediate features of our model and temporal101

convolutional networks [12]. We evaluate our approach on102

the Volleyball dataset, Collective Activity Dataset, Collective103

Activity Extended Dataset and Choi’s Dataset, where the104

experimental results show that the SPTS networks outperform105

the state-of-the-arts for group activity analysis.106

Our main contributions are summarized as follows: 107

1) In contrast to recent works for group activity recognition 108

which utilize the appearance clues only, we have devel- 109

oped a Teacher Network to leverage the prior knowl- 110

edge in the semantic domain, which requires no extra 111

labelled data and a little additional computational time 112

cost. 113

2) Different from existing self-attention based works, we 114

have explored the discriminative information of different 115

people by transferring the semantics-preserving attention 116

learned by the Teacher Network to the Student Network 117

in the appearance domain. Towards this, we equip the 118

Teacher Network and Student Network with two attention 119

modules and design an objective function which enforces 120

the Student Network to mimic the Teacher Network. 121

To our best knowledge, these are original efforts lever- 122

aging attention in both semantics and appearance clues, 123

to perform group activity recognition. 124

3) Unlike most conventional works which model the features 125

of people as regular tensors, we have constructed two 126

types of graph for different people according to their 127

spatial coordinates, and built two graph convolutional 128

modules on the Teacher Network and Student Network to 129

reason about the relationship of different people. Exten- 130

sive experimental results on four widely used datasets 131

have shown the effectiveness of our proposed method. 132

4) We have extended our method for action segmentation 133

task based on its intermediate features. With the new 134

designed model, the temporal intervals of group activities 135

in an untrimmed sequence can be accurately segmented 136

and our method achieves very competitive performance 137

on this task. 138

It is to be noted that a preliminary conference version of 139

this work was initially presented in [13]. As an extension, our 140

SPTS with two new graph convolutional modules can better 141

exploit the interaction information of different people. More- 142

over, we have conducted experiments on other two datasets 143

and provided more in-depth analysis on the experimental 144

results. Furthermore, we have extended our approach on action 145

segmentation task for untrimmed videos and demonstrate its 146

effectiveness. Besides, we have presented analysis on the 147

computational time cost of our work. 148

II. RELATED WORK 149

In this section, we briefly review four related topics: 150

1) group activity recognition, 2) attention-based models, 151

3) knowledge distillation, and 4) graph convolutional network. 152

A. Group Activity Recognition 153

Activity recognition is one of the most important issues in 154

computer vision [14]–[18], where group activity recognition is 155

an active sub-topic and various methods have been explored 156

in recent years [1]–[7], [19]. These methods can be roughly 157

divided into two categories: hand-crafted feature based and 158

deep learning feature based methods. For the first category, 159

a number of researchers fed hand-crafted features into graph- 160

ical models to capture the structure of group activity. For 161

example, Lan et al. [9] presented a latent variable framework 162



IEE
E P

ro
of

TANG et al.: LEARNING SEMANTICS-PRESERVING ATTENTION AND CONTEXTUAL INTERACTION 3

to model the contextual information of person-person inter-163

action and group-person interaction. Hajimirsadeghi et al. [1]164

developed a multi-instance model to count the instances in a165

video for group activity recognition. Shu et al. [10] employed166

AND-OR graph formalism to jointly group people, recognize167

event and infer human roles in aerial videos. However, these168

methods relied on hand-crafted features, which require strong169

prior knowledge and were short of discriminative power to170

capture the temporal cue.171

For the deep learning based methods, numbers of works172

have been proposed to leverage the discriminative power173

of deep neural network for group activity recognition. For174

example, Ibrahim et al. [2] proposed a hierarchical model175

with two LSTM networks, where the first LSTM captured176

the dynamic cues of each individual person, and the second177

LSTM learned the information of group activity. Shu et al. [3]178

extended this work by replacing the softmax layer of the RNN179

with a new energy layer to improve reliability and numerical180

stability of inference. Wang et al. [6] built another LSTM181

network upon this work to capture the interaction context of182

different people. More recently, Ibrahim et al. [20] developed183

a Hierarchical Relational Network architecture to calculate the184

relational representation of people and describe their potential185

interactions. However, the works mentioned above mainly186

focused on the appearance domain, which ignored the semantic187

relationship between the individual actions and group activity.188

More recently, Li et al. [4] presented a SBGAR scheme, which189

generated the captions of each video and predicted the final190

activity label based on these captions. However, the generated191

captions were not always reliable, and the inferior captions192

will do harm to the final process of recognition. To this193

end, we simultaneously explore the contextual relationship of194

individual actions and group activity in both semantic and195

appearance domains, and employ the semantic knowledge to196

enhance the performance of vision task.197

B. Attention-Based Models198

Attention-based model is motivated by the attention mech-199

anism of primate visual system [21], [22]. It aims to select200

the most informative parts from the global field. In the past201

two decades, attention-based models have been widely applied202

into the realm of natural language processing (e.g., machine203

translation [23], [24]), computer vision (e.g., video face recog-204

nition [25], [26], person re-identification [27], object local-205

ization [28]), and their intersection (e.g., image caption [29],206

video caption [30] and visual question answering [31]).207

As for human action/activity recognition, Liu et al. [32]208

developed global context-aware attention LSTM networks to209

select the informative joints in skeleton-based videos. Further-210

more, Song et al. [33] proposed a spatial-temporal attention-211

based model to learn the importance of different joints and212

different frames. Different from these two works [32], [33],213

we employ the attention model to allocate different weights to214

different people in a group for RGB-based activity recognition.215

Although a few works [5], [11] have exploited attention-216

based models for group activity recognition, they only217

applied “self-attention” scheme and were incapable to explain218

the physical meaning of the learned attention explicitly.219

Different from these methods, our SPTS networks distill the 220

attention knowledge in the semantic domain to guide the 221

appearance domain, which utilize the semantic information 222

adequately and make the learned attention interpretable by 223

further showing the visualization results. 224

C. Knowledge Distillation 225

The concept of “knowledge distillation” is originated from 226

the work [34] by Hinton et al., which aims to transfer the 227

knowledge in a “teacher” network with larger architecture 228

and higher performance to a smaller “student” network. They 229

enforced a constraint on the softmax outputs of the two net- 230

works when optimizing the student network. After that, several 231

works have been proposed to regularize the two networks 232

based on the intermediate layers [29], [35], [36]. For example, 233

Yim et al. [36] utilized flow of solution procedure (FSP) 234

matrix, which were generated based on feature maps of two 235

layers, to transfer knowledge in teacher network to student 236

network. Chen et al. [37] employed technique of function- 237

preserving transformations to accelerate the learning process 238

of student network. The most related work to ours is [29], 239

which also utilized the information across the attention mod- 240

ules of two networks. Different from [29], where the inputs 241

of the two networks were both images and the networks 242

architecture were similar, our work explores the knowledge 243

in two different domains (semantic domain and appearance 244

domain) and utilizes the additional recurrent neural network to 245

address a more challenging task of group activity recognition. 246

D. Graph Convolutional Network 247

Recently, there has been progress in the formulation of 248

convolutional neural network on graphs (i.e. graph convolu- 249

tional network) [38]–[41] thanks to the development of graph 250

signal processing (GSP) [42]. Given inputs on the nodes of the 251

graph, the graph convolutional network (GCN) aims to learn 252

representative features like standard CNN, which sheds lights 253

on new possibilities to adopt data-driven method and perform 254

convolutional operator on non-Euclidean space. Computer 255

vision has also benefited from GCN in recent years [43], [44]. 256

For example, Wang et al. [45] considered the semantic 257

embeddings as different nodes of the knowledge graph, and 258

adopted graph convolutional network to promote the problem 259

of zero-shot recognition. Wang et al. [46] proposed a Graph 260

Reasoning Model (GRM) to study the problem of social 261

relationship understanding. For human action recognition, 262

several works [47]–[49] have been proposed to develop graph 263

convolutional network for skeleton-based action recognition. 264

Unlike these works which regarded the coordinates of human 265

joints as the nodes of the graph, we construct the nodes of the 266

graph according to the features of individual person in both 267

semantic domain and appearance domain. Then, we employ 268

two graph convolutional modules to model the relationship of 269

different people and enhance the recognition performance. 270

III. APPROACH 271

The motivation of this work is to adequately explore the 272

information in both appearance domain and semantic domain 273
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Fig. 2. A framework of our proposed SPTS networks, which contain two sub-networks. We first train the Teacher Network, which models relationship
between words of individual actions and the word of group activity. Next, we train the Student Network, which takes a set of tracklets as input and predicts
the label of group activity. We enforce three types of constraints during the training process of Student Network, i.e., semantics-preserving attention constraint,
knowledge distillation constraint and classification constraint.

for group activity recognition. In this section, we first for-274

mulate the problem, then we present the details of our SPTS275

networks and introduce how to build several graph convolu-276

tional modules on the SPTS. Finally we discuss the difference277

of our models with other related works.278

A. Problem Formulation279

We denote a tri-tuple (V , y, z) as a training sample for a280

video clip, where V is the specific video and z is the ground-281

truth label for group activity. Let Y = {yn}N
n=1 denote the282

labels of individual actions, where yn represents the label283

corresponding to the nth person. The goal of group activity284

recognition is to infer the final label z corresponding to V285

during testing phase. Previously, researchers usually utilize286

a set of tracklets of the people in the video as inputs. The287

tracklets are denoted as X = {xt
1, xt

2, ...x
t
n, ...x

t
N }T

t=1. where288

t represents the time stamp of the tth frame. We follow this289

problem setting in our work.290

B. SPTS Networks291

Our SPTS networks consist of two subnetworks, namely292

Student Network and Teacher Network. Fig. 2 illustrates the293

pipeline of SPTS networks. In this framework, the Student294

Network aims to predict the final label z given a set of295

tracklets from an input video in the appearance domain, while296

the Teacher Network aims to model the relationship between297

the words of individual actions Y = {yn}N
n=1 and the word298

of group activity z in the semantic domain. It is reasonable299

that Teacher Network tends to achieve comparable or better300

performance than Student Network, because individual action301

labels are powerful low-dimensional representations for the302

task of group action recognition, which is also demonstrated303

in the Experiments section. Additionally, we find the Teacher304

Network and Student Network are complementary in classi-305

fication results, which indicates that jointly considering the306

semantic domain and appearance domain will help. However,307

the ground-truth individual labels Y = {yn}N
n=1 are not308

available during the testing stage. A natural way to address 309

this issue is to employ the knowledge of the Teacher Network 310

to guide the training process of the Student Network. We now 311

detail the proposed SPTS networks as follows. 312

1) Student Network: The goal of our Student Network is 313

to learn a model z = S(X; θs) to predict the label of group 314

activity given a set of tracklets in a video clip, where θs is 315

the set of learnable parameters of the Student Network. For a 316

fair comparison, we utilize the off-the-shelf tracklets provided 317

by [2], [7]. 318

In order to capture the appearance information and temporal 319

evolution of each single person, we employ a DCNN network 320

and an LSTM network to extract features of X , which is a 321

similar scheme according to [2]. Then, we concatenate the fea- 322

tures of the last fc layers of the DCNN and the LSTM network. 323

The concatenation, denoted as G = {gt
1, gt

2, ...g
t
n, ..., gt

N }T
t=1, 324

represents the temporal feature of each individual person. 325

Sequentially, we calculate the score st
n which indicates the 326

importance of the nth person as: 327

st
n = tanh(W1gt

n + b1) , (1) 328

where W1 and b1 are the weighted matrix and biased term. 329

The activation weight we allocate to each person is obtained 330

as follow: 331

β t
n = ex p(st

n)/

N∑

j=1

ex p(st
j ) , (2) 332

where β t
n is the score normalized by a softmax function. 333

Instead of conventional aggregation methods like max-pooling 334

or mean-pooling, we fuse the feature of each individual person 335

at time-step t as: 336

wt
agg =

N∑

n=1

β t
n · gt

n . (3) 337

In this way, the set of activation factors {β t
n}N

n=1 control the 338

contribution of each person to the aggregated feature wt
agg. 339
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Having obtained wt
agg , the aggregated features of each frame,340

we feed them into another group-level bidirectional LSTM341

network. The output features are sent into an fc layer activated342

by a softmax function to obtain the final label of the group343

activity.344

2) Teacher Network: As illustrated above, our Student345

Network can be regarded as an extension of the hierarchical346

deep temporal model [2] by adopting a typical self-attention347

mechanism. However, in such a scheme, the labels of indi-348

vidual actions and group activities are utilized to supervise349

the discriminative feature learning, while their corresponding350

relationship, which captures the dependency of the individual351

actions and group activities in the semantic domain, is rarely352

used. In this section, we introduce a Teacher Network, which353

aims to learn a model z = T(Y ; θt ) to integrate the labels354

of individual actions Y = {yn}N
n=1 into a label of group355

activity z. Note that our Teacher Network essentially addresses356

an NLP-related task, where attention mechanism also shows357

its advantage. Based on this, we develop our Teacher Network358

by introducing an attention scheme, which is similar to our359

Student Network.360

Given a set of individual action labels Y = {yn}N
n=1 as the361

input of our Teacher Network, we first encode them into a362

sequence of one-hot vectors Foh = { foh,n}N
n=1, where foh,n ∈363

RC and C is the number of individual action category. Then364

we embed the Foh ∈ R P×C into a latent space as:365

fem,n = ReLU(W2 fn + b2) , (4)366

where W2 and b2 are the weighted matrix and biased term,367

ReLU denotes the nonlinear activation function [50]. Then368

another attention mechanism, which is corresponding to that369

of the Student Network, is derived as follow:370

sn = tanh(W3 fem,n + b3) , (5)371

αn = ex p(sn)/

N∑

j=1

ex p(s j ) , (6)372

vagg =
N∑

n=1

αn · fem.n . (7)373

Having obtained the vagg , we feed it into an fc layer374

followed by a softmax activation to predict the final label.375

We train the Teacher Network using the ground-truth labels376

of Y and z. It is relatively easy to classify a set of words in377

the semantic domain, thus the Teacher Network will achieve378

higher performance as illustrated in the Experiments section.379

3) Semantics-Preserving Attention Learning: As we380

described, there are two attention modules in our method381

and they both work separately via a self-attention scheme.382

Noticing the fact that they both model the importance of383

different people, a valid question is why not jointly consider384

these two modules. More specially, as the Teacher Network385

directly takes the ground-truth label of individual actions as386

inputs, it is reasonable that its performance is better than387

the Student Network, which takes the tracklets as inputs and388

requires a more complex feature learning process before the389

attention module.390

Based on this reason, we aim to use the attention knowl-391

edge of the Teacher Network to guide the Student Network.392

Algorithm 1 SPTS

In practice, we first train the Teacher Network T(Y ; θt) with 393

the provided labels of training samples. Then, we enforce the 394

Student Network to absorb the teacher’s knowledge during the 395

learning process via a total loss function defined as below: 396

J = JC L S + λ1 JS P A + λ2 JK D 397

= −
L∑

l=1

�(z = l)log(Pl
S) 398

+ λ1
1

N

N∑

n=1

(αn − 1

T

T∑

t=1

β t
n)

2
399

+ λ2‖PT − PS‖2
2 (8) 400

Here λ1 and λ2 are the hyper-parameters to balance the 401

effects of two different terms to make a good trade-off. The 402

physically interpretations of the JC L S , JS P A and JK D are 403

respectively explained as below. 404

The first term JC L S represents classification loss for activity 405

recognition. We calculate the categorical cross-entropy loss, 406

where � is the indicator function which equals 1 when the 407

prediction z = l is true and 0 otherwise. Here l and L denote 408

the predicted label and the number of the total activity cat- 409

egories. The softmax output Pl
S represents the corresponding 410

class probability of the Student Network. The second term 411

JS P A aims to enforce the student’s attention to preserve the 412

teacher’s semantics attention. We adopt the mean squared 413

distance for these two types of attention. The third term JK D 414

denotes the loss of knowledge distillation [34], in which PT 415

and PS are the softmax outputs of the Teacher and Student 416

Network respectively. 417

To optimize (8), we employ the back propagation through 418

time (BPTT) algorithm [51] for learning all the parameters θs 419

of our Student Network. We summarize the pipeline of our 420

SPTS method in Algorithm 1. Note that the Teacher Network 421
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only guides the Student Network during the training phase,422

as the ground-truth label Y = {yn}N
n=1 is not available during423

the testing stage.424

C. SPTS + GCN425

Since a group of people can be considered as a graph-based426

structure, where the node and edge represents each individual427

person and the relationship between two people respectively,428

we further build two graph-based modules upon our SPTP429

networks to adequately explore the contextual information of430

different people for group activity recognition.431

1) Graph Construction: We construct a graph G(U, A) to432

model each frame, where U and A are the nodes sets and433

adjacency matrix respectively. On the one hand, we denote434

U = {u1, u2, ..., uN }, where un ∈ D is corresponding to the435

feature of the nth person. On the other hand, motivated by436

the fact that, the relationship of different people are highly437

correlated to the distance among them, we define the adjacency438

matrix A according to the spatial coordinates of different439

people as follow:440

amn = ex p(−||cm − cn ||22
2

), (9)441

where cm represent the central location of the mth person:442

cm = (γ
xm,mid

W_I
, γ

ym,mid

H_I
). (10)443

Here, W_I and H_I are the width and height of each frame444

respectively. xm,mid and ym,mid are the central positions of the445

input tracklets at the x axis and y axis. The γ is a scale factor,446

where we set it to be 10 empirically. In this way, we embed the447

spatial information into the adjacency matrix A. If two people448

m and n approach each other in the space, the corresponding449

amn will have a large value, and vice versa.450

2) Graph Convolutional Layer: Since the graph of peo-451

ple lie in a non-Euclidean space, we leverage the graph-452

based convolutional Networks (GCN) [39] to learn the spatial453

dependency between different people. Mathematically, we can454

represent a layer of the graph convolution as:455

Z = AU W, (11)456

where W are the learned parameters. Unlike conventional457

convolutional operator that reasons about the regular structure458

locally, the graph convolutional layer passes messages among459

different nodes and updates each nodes according to the pre-460

defined adjacency matrix A, which allows us to better capture461

the contextual information among different people. Moreover,462

we can stack multiple layers of graph convolution to better463

model the non-linear structure among people.464

3) Building GCN Upon SPTS: Fig. 3 displays the illus-465

tration of building GCN upon our SPTS. For the Teacher466

Network, we perform graph convolution on the one-hot vector467

Foh of each video clip:468

Zteacher = AFoh Wteacher , (12)469

where A is obtained based on the middle frame of the video470

clip. The output feature Zteacher is then fed into the attention471

mechanism of the Teacher Network.472

Fig. 3. Flowchart of building graph convolutional modules upon the
SPTS networks. We develop two graph convolutional modules for better
exploring the contextual information of different people. We construct two
types of graph according to the spatial coordinates of different people. The
graph for the Teacher Network is built based on the one-hot encoding
vector Foh , while the graph for the Student Network is constructed according
to the extracted feature G from the input tracklets. The two graphs are sent
into two graph convolutional modules to pass messages of different nodes.
The output features are then fed into the two attention modules of the SPTS
networks, respectively.

For the Student Network, we feed Gt = {gt
1, gt

2, ..., gt
N }, 473

the features of N people at the time stamp t , into the graph 474

convolutional layer: 475

Zt
student = At Gt Wstudent , (13) 476

where At is calculated based on the tracklets of the tth frame. 477

We also perform instance-normalization [52] and non-linear 478

activation (ReLU) on the output feature Zt
student before it is 479

sent into the next layer. We stack three graph convolutional 480

layers for the Student Network, as the input Gt lies in a high- 481

dimension space. The Gt at different time stamps t share the 482

same parameter Wstudent , we concatenate Zt
student from 1 to T 483

as Zstudent = (Z1
student, ..., Z T

student), and then sent Zstudent 484

into the attention module of the Student Network. The effects 485

of the number of graph convolutional layer will be explored 486

in the Experiments section. 487

D. Discussions 488

We discuss the difference of our methods with other two 489

categories of DNN-based methods in this subsection. 490

The first category, such as HTDM [2] and its variants [3] 491

shown in Fig. 4(a), mainly focus on the appearance domain. 492

They first learn features of individual person with an LSTM 493

network, then aggregate them into group representations with 494

a function f1, and finally recognize the activity based on the 495

group representations with another LSTM network. The labels 496

of individual actions Y and group activity z were respectively 497

used to supervise the training process of the first and second 498

LSTM networks. But the corresponding relationship of Y and z 499

have not been utilized explicitly. Moreover, the function 500

f1 turned to be max-pooling or mean-pooling, which lacks 501

physical meaning. 502

The second category, such as SBGAR [4] displayed 503

in Fig. 4(b), focuses on the semantic domain. This method 504
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Fig. 4. Comparison of different DNN-based frameworks for group activity recognition. The solid lines, dashed lines and green arrow denote the process of
forward propagation, backward propagation and semantics-preserving attention learning respectively. Method in (a) first extracts features of individual action,
then aggregates them into group representations with f1, and finally recognizes the activity based on the group representations. Approach in (b) first generates
captions (i.e., individual action labels) of video frames, and recognizes the activity based on these captions by f2. Our method in (c) first employs two graph
convolutional modules to capture the contextual information of features in both semantic and appearance domain. Then we learn f4 to classify the group
activity label based on the learned features in the semantic domain. Finally, we employ the attention knowledge in f4 to guide f3 when aggregating features
in the appearance domain to make the final prediction.

directly generates the caption to describe the video frames,505

and utilizes the captions to classify the group activity with a506

function f2. The individual actions Y were used to supervise507

the process of caption generation and the group activity z508

was utilized to supervise the learning process of f2. However,509

as the group label is sensitive to the captions, the inaccurate510

generated captions will do harm to the final recognition results.511

Different from these methods, our approach in Fig. 4(c),512

adequately leverage the information in the appearance domain513

and the semantic domain for group activity recognition.514

We distill the knowledge in f4 learned in the semantic domain515

to guide the training process of f3 in the appearance domain.516

Moreover, we have employed two graph convolutional mod-517

ules to further reason the dependency of different people and518

enhanced the final recognition performance.519

E. Exploration on Temporal Segmentation for Group Activity520

Temporal segmentation (a.k.a. action segmentation) aims521

to segment actions in untrimmed videos and recognize their522

action labels. Although it has attracted growing attention523

in recent years [12], [53]–[56], few attempts on temporal524

segmentation for group activity have been devoted due to the525

scarcity of annotated datasets and complicated relationship of526

different people. In order to see how our method performs on527

this task, we have made explorations as follows.528

Fig. 5 presents the illustration of incorporating our method529

with temporal convolutional networks (TCN) [12] for group530

activity segmentation. Since our method takes the tracklets531

of N people in T frames as input, we first divide the input532

video into L clips and the length of each clip is T frames.533

Then we employ faster-RCNN [57] to detect people in each534

frames, and align the cropped people in T frames according535

to their locations. Through this pre-process, we obtain a set536

of tracklets and choose N of them according to the top-N537

detection scores in the first frames of the clip. Then we adopt538

a DCNN and LSTM network to extract the features {Fl
1}L

l=1539

Fig. 5. Flowchart of combining our method with temporal convolutional
networks (TCN) [12] for group activity segmentation. The input of the
approach is an untrimmed video with Ltotal (Ltotal = 1000) frames, we first
divide it into L (L=100) clips and the length of each clip is T (T =10) frames.
Then we generate the tracklets based on the mask-rcnn detector and the
locations of different people. Similar with the trimmed setting, the tracklets are
feed into a DCNN and LSTM network to extract features of individual actions.
The extracted features are sent into our model (SPTS Network + GCN) and
generate the features of group activities for each clips. Finally, we concatenate
these clip-based features to a video-based feature and utilize TCN model
to learn the segmentation results. For the l-th clips, the Fl

1 and Fl
2 are

corresponding to the G and {wt
agg}T

t=1 in Fig.2.

of the input tracklets, where Fl
1 is a tensor with the shape of 540

N×T ×d . Here d is the summed dimension of the last fc layers 541

in the DCNN and LSTM networks. The features of individual 542

actions are fed into our model (SPTS Network + GCN). 543

Finally, we concatenate the output features {Fl
2}L

l=1 into a 544

video-based feature F3 = concat (F1
2 , F2

2 , ..., F L
2 ) and sent 545

it into the TCN model to obtain the segmentation results. 546

IV. EXPERIMENTS 547

In this section, we conducted experiments on three 548

datasets for group activity recognition, including volleyball 549

dataset [59], collective activity (CA) dataset [60] and collective 550

activity extended (CAE) dataset [8]. The experimental results 551

and analysis are described in details as follows. 552
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Fig. 6. Examples of the pair-wise representative frames from three different datasets we used. For each group, the RGB-based pictures are presented on
the left, while the corresponding optical flows extracted by Flownet 2.0 [58] are shown on the right. (a) Volleyball dataset. (b) Collective activity dataset.
(c) Collective activity extended dataset. (d) Choi’s dataset.

A. Datasets and Experiment Settings553

1) Volleyball Dataset [59]: The Volleyball dataset is cur-554

rently the largest dataset for group activity recognition. It con-555

tains 55 volleyball videos with 4830 annotated frames. There556

are 9 individual action labels (waiting, setting, digging, falling,557

spiking, blocking, jumping, moving and standing) and 8 group558

activity categories (right set, right spike, right pass, right559

winpoint, left winpoint, left pass, left spike and left set) in560

this dataset. We employ the evaluation protocol in [59] to561

separate the training/testing sets. We employ the metrics of562

Multi-class Classification Accuracy (MCA) and Mean Per563

Class Accuracy (MPCA) on this dataset.564

2) Collective Activity (CA) Dataset [60]: The Collective565

Activity Dataset is a widely used benchmark for the task of566

group activity recognition. It comprises 44 video clips, anno-567

tated with 6 individual action classes (NA, crossing, walking,568

waiting, talking and queueing) and 5 group activity labels569

(crossing, walking, waiting, talking and queueing). There are570

also 8 pairwise interaction labels, which we do not utilize in571

this paper. We split the training and testing sets following the572

experimental setup in [9].573

As suggested in [60] that originally presented the dataset,574

the “walking” activity is rather an individual action than a575

collective activity. To address this, we follow the experimental576

setup in [6], to merge the class of “walking” and “crossing”577

as a new class of “moving”. We report the Mean Per Class578

Accuracy (MPCA) of the four activities on the CA dataset,579

which can better evaluate the performance of the classifiers.580

3) Collective Activity Extended (CAE) Dataset [8]: The581

Collective Activity Extended Dataset contains 7 individual582

action labels and 6 group activities categories. It replaces the583

“walking” activity with other two activities of “dancing” and584

“jogging” in the CA Dataset. We adopted the training and585

testing splits used in [61] to train our models.586

4) Choi’s Dataset [7]: The Choi’s dataset comprises587

32 videos, which are annotated with 3 individual actions588

(walking, standing still, and running), and 6 group activi-589

ties (gathering, talking, dismissal, walking together, chasing,590

and queueing). The dataset also provided 8 pose labels and591

9 interaction labels which we did not utilize. We followed the592

standard experimental protocol of the 3-fold cross validation,593

which was adopted in [7].594

5) Untrimmed Volleyball Dataset [59]: The untrimmed595

Volleyball dataset consists of 54 long videos of Volleyball596

datasets,1 which is for temporal segmentation. The duration597

1The original volleyball dataset provided trimmed clips and the names
of 55 long videos. However, the 21-th video cannot be found according to its
names. Moreover, due to the changes of frame rate on YouTube, 8 videos are
incorrectly aligned with the temporal annotation provided in [2]. To address
this, we spent 2 days refining the annotations to ensure their correctness.

of each video varies from 76.76 minutes to 185.13 minutes. 598

Since the length of these videos are too long for analysis 599

and only numbers of temporal intervals have been annotated 600

in [2]. We proceed them in to 837 clips according to the 601

annotation [2], where each clips has 1000 frames. We chose 602

this length as it is comparable with the duration of video clips 603

in GTEA dataset [62] and 50 Salads dataset [63] evaluated 604

by TCN [12]. We finally obtained 612 clips for training and 605

225 clips for testing. There are 8 group activity labels (the 606

same with [2]) and a background label. We report the F1 score 607

at frame level, which is computed as: 608

F1 = 2 × precision × recall

precision + recall
. (14) 609

B. Implementation Details and Baselines 610

1) Group Activity Recognition: Our proposed methods were 611

built on the Pytorch toolbox and implemented on a system with 612

the Intel(R) Xeon(R) E5-2660 v4 CPU @ 2.00Ghz. We trained 613

our model with two Nvidia GTX 1080 Ti GPUs and tested it 614

with one GPU. 615

For the Teacher Network, we took the ground-truth label of 616

each individual action as input, and the one-hot vectors were 617

projected through an fc layer. The embedded features were 618

weighted and summed based on different weights learned by 619

the self-attention mechanism, which indicates the importance 620

of different people. The aggregated features were then fed into 621

an fc layer for classification. The Teacher Network was trained 622

with the Adam optimization method with 16 as the batch size. 623

And the initial learning rate was 0.003. 624

For the Student Network, we first finetuned VGG net- 625

work [64] pretrained on ImageNet [65] to extract CNN fea- 626

tures of the tracklets. The features of the last fc layer were 627

fed into a LSTM network with 3000 nodes. The concatenated 628

features of VGG and LSTM networks were then fed into an 629

fc layer with the size of 512 to cut down the dimension. The 630

importance of each person on each frame was generated by 631

the attention mechanism, and the embedded features of each 632

person were then summed by weight. The weighted features 633

were then fed into a bidirectional LSTM network with the 634

hidden size of 128. The output features were fed into an fc 635

layer for classification. During the Teacher guided training 636

process, the Student Network was optimized with Adam and 637

the initial learning rate was 0.00003. As for ratio of different 638

parts of losses, we set λ1 = λ2 = 1. The batch size was set 639

to be 16. 640

In order to better explore the motion information of the 641

video and inspired by the success of two-stream network 642

architecture [18], we computed the optical flow between two 643

adjacent video frames using Flownet 2.0 [58]. We extracted 644
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the DCNN and LSTM features of optical flow tracklets, and645

concatenated them with the features of the original RGB646

tracklets before the attention module of the Student Network.647

We report the performance of the following baseline meth-648

ods and different versions of our approach:649

• HDTM [2]: A hierarchical framework with two LSTM650

models. The first LSTM network took the features651

extracted from the tracklets of each person as input, and652

was trained with the supervision of the individual action653

label. The input of the second LSTM network was the654

aggregation of features learned by the first LSTM, and655

was trained with the supervision of the group activity656

label.657

• Ours-teacher∗: The Teacher Network directly took the658

ground-truth labels of the individual actions as input659

during both training and testing phases. Hence, it is660

not fair to directly compare the performance of Teacher661

Network with other methods, which are inaccessible to662

the ground-truth labels of the individual actions during663

testing phase. We report the performance of Ours-teacher∗664

only for reference.665

• Ours-teacher: During the training phase, we used the666

ground-truth label of each individual action as input667

to train the Teacher Network. During the testing stage,668

we used the individual action label learned from the first669

LSTM of HDTM to predict the final group activity label.670

• Ours–SA (self-attention): An original model of our Student671

Network, which can be regarded as adding a self-attention672

module upon the HDTM [2].673

• Ours–SPA (semantics-preserving attention): A version of674

model which employed the attention knowledge in675

Teacher Network to help the training of Student Network.676

• Ours-SPA+KD (knowledge distillation): A model of com-677

bining the knowledge distillation loss [34] with Ours–SPA.678

• Ours†-x: Models of combining the optical flow input679

based on the original Ours-x.680

• Ours-teacher∗ + GCN: Building the graph convolutional681

module upon the Teacher Network.682

• Ours+GCN–SA, Ours+GCN–SPA+KD, Ours† +GCN–SA683

and Ours† +GCN– SPA+KD: Models of equipping the684

graph convolutional module with Ours–SA, Ours–SPA+KD,685

Ours†
– SA and Ours†

– SPA+KD.686

2) Temporal Segmentation for Group Activity: During687

experiments, we first pretrained our model on the trimmed688

Volleyball dataset, and finetuned it on the untrimmed dataset689

to extract features. We report the segmentation results of690

comparing methods in two categories: image-level methods691

and person-level methods. The first category consists of two692

methods, which took the whole images as input directly:693

(1) VGG16 [64]: We employed VGG16 network pretrained694

on ImageNet [65], and finetuned it on the training set695

of untrimmed Volleyball to predict the frame-level labels.696

(2) TCN [12]: We used the features of the fc7 layer in697

VGG16 to train the TCN models. The second category com-698

prises three approaches, which were based on the tracklets of699

different persons: TCN–SA, TCN–SPA+KD, TCN-GCN–SPA+KD.700

They denote using the methods Ours–SA, Ours–SPA+KD,701

Ours-GCN–SPA+KD for feature extraction respectively.702

TABLE I

COMPARISON OF THE GROUP ACTIVITY RECOGNITION ACCURACY (%)
ON THE VOLLEYBALL DATASET. † DENOTES THAT THE

MODEL TAKES BOTH RGB IMAGES AND
OPTICAL FLOWS AS INPUTS

C. Results on the Volleyball Dataset 703

We first evaluate our proposed methods on the Volleyball 704

dataset. We follow [2] to separate players into two groups 705

on the left and right, and extend the individual action labels 706

to 18 categories (e.g., “left standing”, “right waiting”, etc.) 707

according to their spatial coordinates. 708

1) Comparison With the State-of-the-Arts: Table I presents 709

the comparison performance with different approaches. 710

We observe that our final model (Ours† + GCN– SPA + KD) 711

achieves 91.2% MCA and 91.4% MPCA, outperforming exist- 712

ing state-of-the-art methods for group activity recognition. 713

2) Analysis on the SPTS Networks: Here we analyze 714

our semantics-preserving learning scheme. Compared with 715

the 0.3% (MCA and MPCA) improvement by the self- 716

attention scheme over the baseline method, our attention- 717

guided approach achieves 2.5% (MCA) and 3.2% (MPCA) 718

improvement, which demonstrates the effectiveness of our 719

proposed method. We also discover that, combining with the 720

optical flow can lead to a slight improvement on this dataset. 721

While besides, Our-teacher∗, which takes the ground-truth 722

of individual actions as the testing inputs of the Teacher 723

Network, reaches performance of 88.3% MCA, Our-teacher, 724

which utilizes the predicted individual actions as the testing 725

inputs, only attains 69.3% MCA. This is because, the Teacher 726

Network is sensitive to the inputs and the incorrected predicted 727

individual actions will greatly harm the performance of the 728

final recognition. 729

We also show several visualization results of the learned 730

attention in Fig. 7. The group activity label of Fig. 7(a) 731

is “left spike”. For the self-attention model of the Student 732

Network, the model most likely focuses on those people 733

wearing different clothes in a group, e.g., the white per- 734

son (SA:60) in the black team, and the yellow person (SA:62) 735

in the white team. However, these people are not exactly key 736

people for recognizing the group activity. When we employ 737

the attention model of Teacher Network, we can focus on 738

those words, which are essentially important in the semantic 739
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Fig. 7. Visualization of the learned attention on the Volleyball dataset. In (a)(b)(c), for each video clip, we show the representative frame on the left, while
the cropped people are shown on the right. In each dash box, we display the labels of individual actions and three types of attention score: T (Teacher
Network), SA (Student Network with self-attention scheme) and SPA (Student Network with semantics-preserving attention method). The SA and SPA scores
in (a)(b)(c) are averaged scores over a clips (10 frames). In (d)(e), we present the attention scores and the corresponding people in temporal domain.

domain, e.g., the spiking (T:80), and the blocking (T:51).740

And after employing our SPTS networks, we will transfer741

this attention knowledge from the semantic domain to the742

appearance domain, and guide the Student Network to focus743

on the “left spiking” person (SPA:62), who contributes most744

to recognizing the final activity. The group activity label of745

Fig. 7(b) is “left winpoint”, where there is no special people for746

recognizing this activity. However, the self-attention scheme747

assign the highest score to the yellow person (SA:72), which748

does not carry key information. After employing the SPTS749

networks, the score of this person is decreased to 47, and750

extra attention is allocated to other people. Fig. 7(c) illustrates751

similar results to Fig. 7(a).752

We further present the learned attention scores on temporal753

domain in Fig. 7(d) and Fig. 7(e). For the “spiking” people754

in volleyball dataset, our SPA scores (blue ones) go up to 755

climaxes when the players wave their hands to spike the ball, 756

which assigns more attention to the discriminative frames. 757

3) Analysis on the Graph Convolutional Modules: 758

As shown in Table I, when applying the graph convolu- 759

tional modules, the Teacher Network achieves 4.0% and 760

6.3% improvement on the MCA and MPCA metrics respec- 761

tively. For the Student Network, Ours Ours† + GCN– SA and 762

Ours† + GCN– SPA + KD attain 2.7% and 0.5% improvement 763

on MCA, and 3.5% and 1.4% improvements on MPCA, 764

which consistently demonstrates the effectiveness of the graph 765

convolutional modules. 766

Moreover, we have conducted experiments on adopting 767

different layers for the Teacher Network and Student Network. 768

As presented in Table II, the peaks of the Teacher Network and 769
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TABLE II

COMPARISON OF THE GROUP ACTIVITY RECOGNITION ACCURACY (%)
OF DIFFERENT NUMBER OF GRAPH CONVOLUTIONAL

LAYERS ON THE VOLLEYBALL DATASET

TABLE III

COMPARISON OF THE GROUP ACTIVITY RECOGNITION ACCURACY (%)
ON THE CA DATASET. † IS DEFINED IN THE CAPTION OF TABLE I

Student Network appear at one layer and three layers respec-770

tively. This is because, the dimension of input feature to the771

Teacher Network is relatively low and one graph convolutional772

layer is proper. For the Student Network, the dimension of773

input feature is much higher, thus deeper structure is needed774

to achieve a better result.775

D. Results on the CA Dataset776

1) Comparison With the State-of-the-Arts: Table III shows777

the comparison with different methods on the CA dataset.778

The MPCA results of other approaches are computed based779

on the original confusion matrices in [1]–[4], [6], [7].780

We observe that, our final model (Ours† + GCN– SPA + KD)781

achieves 95.8% MPCA, outperforming the state-of-the-art [7]782

by 5.0%. Moreover, our method have improved the baseline783

method HDTM [2] by 6.0%. Fig. 9 presents the confusion784

matrices of the baseline methods and our SPTS networks. It is785

clear that SPTS networks attain superior results, especially786

for distinguishing the activity of “moving” and “waiting”.787

Besides, compared with SBGAR and Ours-teacher, which788

directly utilized the semantic information to predict the final789

labels, our method achieves 5.9% and 7.6% improvement,790

which demonstrates its effectiveness. Objectively speaking,791

we should own the major contribution to the combination792

of the optical flow, which explicitly captures the motion793

information of the scene. Based on this, our two semantics-794

preserving learning method and graph convolutional module795

have further enhanced the recognition performance, which will796

be discussed as follow.797

2) Analysis on the SPTS Networks: From Table III,798

our attention-guided method brings 1.0%, 1.4% and 0.4%799

improvements on the self-attention scheme of Ours– SA, 800

Ours†
– SA and Ours+GCN†

– SA. We notice that these improve- 801

ments are less significant than those on the Volleyball dataset. 802

This is because the setting of the CA dataset is to assign 803

what the major people are doing to the label of group activity. 804

Hence, attention model is not so important. 805

We also show the visualization of the learned attention 806

in Fig. 8. As shown in Fig. 8(a), the group activity label is 807

“waiting”, hence the Teacher Network allocates more attention 808

to the words “waiting” (29) and less attention to the word 809

“moving”. Guided by this information, the Student Network 810

decreases the attention (from 22 to 17) of the “moving” 811

person, which can be regarded as a noise for recognizing 812

the group activity. For Fig. 8(b), the group activity is “mov- 813

ing”, and it is reasonable that the Teacher Network allo- 814

cates averaged score to the three individual words “moving”. 815

Taught by this attention knowledge, the Student Network 816

increases the attention of the top person from 20 to 27, and 817

decreases the attention of the right person from 43 to 37, 818

so that the information of three people can be utilized 819

equally. 820

The temporal attention scores are shown in Fig. 8(c) and 821

Fig. 8(d). For the “spiking” people in volleyball dataset, 822

our SPA scores (blue ones) go up to climaxes when the 823

players wave their hands to spike the ball, which assigns 824

more attention to the discriminative frames. For the “waiting” 825

and “moving” people in CA dataset, the learned SPA scores 826

vary little over time because there is no part of particular 827

significance during these actions. 828

3) Analysis on the Graph Convolutional Modules: When 829

we apply graph convolutional modules to the SPTS networks, 830

the MPCA increases 1.1% and 0.1% over Ours†
– SA and 831

Ours†
– SPA + KD respectively, which also shows its effectiveness. 832

However, we observe that the improvements are not novel as 833

the results on the volleyball dataset. The reason is that the 834

volleyball dataset is the currently largest dataset for group 835

activity recognition, while the CA dataset is relatively small. 836

Since the graph convolutional module is a data-driven model, 837

more training data can bring more benefits. 838

E. Results on the CAE Dataset 839

We further conducted experiments on the CAE dataset. 840

Table IV presents the comparison with different methods, 841

where our final model reaches a performance of 98.1%, 842

outperforming the existing state-of-the-art methods. The self- 843

attention scheme achieves 95.0% and 95.9% recognition 844

accuracy on the RGB inputs and combining optical flows 845

respectively, where we obtains 0.9% and 1.7% improve- 846

ments when applying our SPTS network. Moreover, Ours- 847

teacher∗ +GCN, Ours† +GCN– SA and Ours† +GCN– SPA + KD 848

obtained 1.3%, 0.9% and 0.5% improvements benefiting from 849

the graph convolutional modules, which further shows the 850

effectiveness of the proposed approaches. 851

Fig. 9 presents the comparison of confusion matrices on 852

the baseline method and our final model. For the baseline 853

method, “waiting” is sometimes confused with the activity 854

“crossing”, and “dancing” is likely to be misclassified as 855

“jogging”. When applying our method, we clearly show the 856
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Fig. 8. Visualization of the learned attention on the CA dataset. The definitions of T, SA and SPA are the same with those in Fig. 8.

TABLE IV

COMPARISON OF THE GROUP ACTIVITY RECOGNITION ACCURACY (%)
ON THE COLLECTIVE ACTIVITY EXTENDED DATASET.

† IS DEFINED IN THE CAPTION OF TABLE I

advantages on discriminating these activities and obtain the857

promising recognition results.858

F. Results on the Choi’s Dataset859

Table V presents the experimental results. In this dataset,860

our final model Ours† + GCN– SPA + KD achieves 78.1% accu-861

racy, which is comparable with existing methods [2], [7],862

[60]. Objectively speaking, the performance of our method863

is not novel as those in the volleyball [59], CA [60] and864

CAE [8] datasets, and the reasons are two folds: (1) The 865

methods [7], [60] utilize the pose labels and interaction labels, 866

which are not used in our methods. (2) Our methods are data- 867

driven based, while the methods [7], [60] use hand-crafted 868

features. So they have more advantages on the Choi’s dataset, 869

which is the smallest compared with the other three datasets. 870

Besides, we observe that combining optical flow can bring 871

a large improvement in this dataset. This is because the 872

individual action labels of this dataset are “walking”, “standing 873

still”, and “running”, so the features obtained with the input of 874

optical flow have much more discriminative power. Moreover, 875

we find the GCN and semantics-preserving attention scheme 876

can further lead to improvements, which demonstrates the 877

effectiveness of our proposed approaches. 878

G. Results on the Untrimmed Volleyball Dataset 879

We evaluate our method for action segmentation on this 880

dataset and Table VI presents the experimental results. First, 881

in the image-level category, we find that utilizing TCN can 882

improve the performance over the frame level method, which 883

demonstrates the effectiveness of TCN in modelling temporal 884

dependency. Second, the person-level methods perform better 885

than the whole frame based methods. This is because the later 886

ones can better focus on the action performer, which provides 887

more discriminative power of action. Finally, we observe that 888

adopting our semantic-preserving attention and GCN model 889

can further improve the performance, which indicates the 890

discriminative power of features learned by our proposed 891

method. We also show several action segmentation results in 892

supplementary material for visualization. 893



IEE
E P

ro
of

TANG et al.: LEARNING SEMANTICS-PRESERVING ATTENTION AND CONTEXTUAL INTERACTION 13

Fig. 9. Comparison of Confusion Matrices on CA [60] and CAE dataset [8]. † is defined in the caption of Table I. For the CA datset, we merge the
class of Walking and Crossing as the same class of Moving as suggested in [6]. (a) Baseline - HDTM. (b) Ours† + GCN−S P A+K D . (c) Baseline - HDTM.
(d) Ours† + GCN−S P A+K D .

TABLE V

COMPARISON OF THE GROUP ACTIVITY RECOGNITION ACCURACY (%)
ON THE CHOI’S DATASET. † DENOTES THAT THE MODEL TAKES

BOTH RGB IMAGES AND OPTICAL FLOWS AS INPUTS.
‡ AND � REPRESENT THAT THE EXTRA POSE AND

INTERACTION ANNOTATIONS
ARE FURTHER USED

TABLE VI

COMPARISON OF THE GROUP ACTIVITY SEGMENTATION

ACCURACY (%) ON THE UNTRIMMED

VOLLEYBALL DATASET

H. Analysis on the Influence of Caption Quality894

Captions, which are a sets of individual words of actions in895

this paper, are utilized during three stages in our method:896

Stage 1: Finetuning the DCNN and LSTM network, and897

extracting the features of individual actions.898

Stage 2: Training the Teacher network.899

Stage 3: Guiding the training process of the Student net-900

work.901

The Stage 1 is a common process in most deep-learning902

based methods [2], [3], [6] and the Stage 2 is an intermediate903

process of our method. The Stage 3 is what we should pay904

TABLE VII

ANALYSIS ON THE INFLUENCE OF INFERIOR CAPTIONS

ON THE SPLIT2 OF CHOI’S DATASET

more attention to, as it is the core step of our method and 905

directly influences the final recognition result. 906

In order to further analyze the influence of the caption 907

quality, we conducted the experiments on the split2 of Choi’s 908

dataset. We randomly selected 50% captions in the training 909

sets and assigned random single action labels to them. In this 910

way, the caption quality will become inferior. 911

Table VII presents the comparison between results on 912

the original setting (Teacher*, Student) and the new 913

setting (Teacher*-new, Student-new, Student-new– SPA + KD). 914

We observe that the captions will heavily influence Stage 1 and 915

Stage 2 (The accuracy drop from 74.4% (Student) to 60.8% 916

(Student-new) because the extracted features became inferior). 917

In comparison, the decrease caused by our method (Stage 3) is 918

slight, which shows its robustness to the low quality captions. 919

The intuition of our method’s robustness lies in two folds. 920

First, as the Teacher Network is trained with noisy input 921

labels, the semantics-preserving attention would tend to learn 922

to deal with such noise. Second, knowledge distillation from 923

Teacher Network provides additional soft labels for training 924

Student Network, which will inevitably cause the decrease of 925

the Student Network if the Teacher Network is noisy. But 926

with ground-truth group activity label as direct supervision, 927

this decrease in performance is relieved and won’t hurt the 928

final result too much. 929

I. Analysis on the Computational Time 930

There are some real-world applications for group activity 931

recognition, e.g., sports video analysis and traffic surveil- 932

lance, which require recognizing the activity in real time. 933

Therefore, we are motivated to investigate the time cost 934

of our approach. Table VIII shows the computational time 935
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TABLE VIII

COMPUTATIONAL TIME ANALYSIS ON THE VOLLEYBALL DATASET.
† IS DEFINED IN THE CAPTION OF TABLE I

TABLE IX

COMPARISON OF THE COMPUTATIONAL TIME (s) OF DIFFERENT

METHODS ON THE VOLLEYBALL DATASET. THE RESULTS

ARE BASED ON A CLIP WITH 10 FRAMES. † DENOTES
THAT THE RESULTS ARE BASED ON THE INPUTS

WITH RGB IMAGES AND OPTICAL FLOWS

analysis of our method. The training data were based on one936

run while the testing data were averaged over five runs on937

the Volleyball dataset. We did not include the time to detect938

individual players as we utilized the off-the-shelf tracklets939

provided by [2].940

Without utilizing optical flow, it required about 0.36 +941

11.50 + 0.46 + 1.00 = 13.32h to train the SPTS + GCN. For942

a video clip with 10 frames, it took 10×(8.01×12)+13.93 =943

983.14ms(0.983sec) to predict the group activity label. More-944

over, training the Teacher Network was about 0.36 h, only945

2.70% of the entire training time.946

When combining the optical flow, the training phase lasted947

about 0.36 + 61.48 + 2 × (11.5 + 0.46) + 1.16 = 86.92h948

while predicting the label of a video clip took 10 × (434.65 +949

8.01 × 12 × 2) + 26.45 = 6295.35ms(6.295sec). The reason950

why combining the optical flow is relatively slow is that,951

we employed the Flownet 2.0 model with the best performance952

and highest computational time cost in [58].953

Table IX presents the computational time comparison with954

state-of-the-arts. The result of SBGAR is reported from [4],955

and the others are based on our implementation. On one hand,956

we find that when combining optical flow, the SBGAR is more957

efficient and the reason are two folds. (1) The optical flow958

computation time of SBGAR on a single image is much faster959

than ours (0.022s vs 0.435s) due to the difference between960

the methods for calculating optical flow. (2) SBGAR directly961

takes the whole frames as inputs while our method is based962

on the a set of tracklets. On the other hand, compared with963

the baseline approach HDTM [2], the increased time cost964

of Ours– SPA + KD and Ours+GCN– SPA + KD are slight, which965

illustrates the efficiency of our methods.966

V. FUTURE WORKS 967

There are some interesting directions for future works: 968

1) Designing different formulations of GCN for group 969

activity recognition. For example, one is to use a single 970

graph with temporal information. Concretely, we can 971

first perform temporal pooling (e.g., max-pooling or 972

attention-pooling) over the features of individual person 973

and adjacency matrices of different frames, and then 974

construct a single graph and feed it into the GCN model. 975

Another one, which is inspired by [47], is to build a 976

spatial-temporal graph. In this way, features of different 977

people in different frames will be organized in a unified 978

graph, and the final bidirectional LSTM layer in our 979

model can be removed. However, as the scale of the 980

spatial-temporal graph is much larger, other efforts on 981

efficient modeling need to be devoted. 982

2) Transferring knowledge in the graph between the Stu- 983

dent and Teacher network.2 984

3) Employing our method for the tasks like image/video 985

caption or visual question answering (VQA), which lie 986

in the interaction area of the natural language domain 987

and computer vision domain. 988

4) Exploring different variants in [58] and other optical 989

flow estimation algorithms to achieve a better trade-off 990

between the accuracy and efficiency. 991

VI. CONCLUSIONS 992

In this paper, we have presented a Semantics-Preserving 993

Teacher-Student (SPTS) architecture for group activity recog- 994

nition in videos. The proposed method has explored the 995

attention knowledge in the semantic domain and employed 996

it to guide the learning process in appearance domain, 997

which explicitly exploits the attention information of the 998

group people. Moreover, we have strengthened our SPTS 999

by incorporating with two graph convolutional modules to 1000

reason the relationship among different people. Furthermore, 1001

we have extended our approach on action segmentation task 1002

for untrimmed videos and demonstrated its effectiveness. 1003

Extensive experimental results on four datasets have shown the 1004

superior performance of our proposed method in comparison 1005

with the state-of-the-arts. 1006
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